Number Systems

Irrational Numbers

• Irrational numbers are those which **cannot** be expressed in the form $\frac{p}{q}$, where *p*, *q* are integers and $q \neq 0$. **Example:** π , $\sqrt{2}$, $\sqrt{7}$, $\sqrt{14}$, 0.020220220... are irrational numbers.

Irrational numbers are the numbers which neither terminate nor repeat. **Example:** $\frac{22}{7}$ or as 3.14, both of which are rationals.

• Decimal expansion of a rational number can be of two types:

(i) Terminating(ii) Non-terminating and repetitive

In order to find decimal expansion of rational numbers we use long division method.

1237

For example, to	find the decimal	expansion of	25

We perform the long division of 1237 by 25.

	49.48	
25)	1237.00	-
	100	
	237	
	225	
	120	
	100	
	200	
	200	
	0	

1237

Hence, the decimal expansion of 25 is 49.48. Since the remainder is obtained as zero, the decimal number is terminating.

Decimal expansion of irrational numbers

• The decimal expansion of an irrational number is non-terminating and non-repeating. Thus, a number whose decimal expansion is non-terminating and non-repeating is irrational.

CLICK HERE

For example, the decimal expansion of $\sqrt{2}$ is 1.41421...., which is clearly non-terminating and non-repeating. Thus, $\sqrt{2}$ is an irrational number.

• The number $\sqrt[n]{a}$ is irrational if it is not possible to represent *a* in the form b^n , where *b* is a factor of *a*.

For example, $\sqrt[b]{12}$ is irrational as 12 cannot be written in the form b^6 , where *b* is a factor of 12.

- Conversion of decimals into equivalent rational numbers:
- Non-terminating repeating decimals can be easily converted into their equivalent rational numbers.

For example, $2.35\overline{961}$ can be converted in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$ as follows: Let $x = 2.35\overline{961}$ x = 2.35961961... ... (1) On multiplying both sides of equation (1) with 100, we obtain: 100x = 235.961961961... ... (2) On multiplying both sides of equation (2) with 1000, we obtain: 100000x = 235961.961961961... ... (3) On subtracting equation (2) from equation (3), we obtain: 99900x = 235726 $\Rightarrow x = \frac{235726}{99900} = \frac{117863}{49950}$ Thus, $2.35\overline{961} = \frac{117863}{49950}$

• Irrational numbers between any two rational numbers:

There are infinite irrational numbers between any two rational numbers. We can find irrational numbers between two rational numbers using the following steps:

- **Step 1**: Find the decimal representation (up to 2 or 3 places of decimal) of the two given rational numbers. Let those decimal representations be a and b, such that a < b.
- **Step 2**: Choose the required non-terminating and non-repeating decimal numbers (i.e., irrationl numbers) between *a* and *b*.

Example: 0.34560561562563..., 0.3574744744474444... and 0.369874562301...are three irrational numbers beween 0.33 and 0.4.

• Representation of rational numbers on number line using successive magnification:

Example: Visualize $3\overline{32}$ on the number line, upto 4 decimal places.

Solution:

3.32 = 3.3232... = 3.3232 (approximate upto 4 decimal place)

Step 1: As 3 < 3.3232 < 4, so divide the gap between 3 and 4 on the number line into 10 equal parts and magnify the distance between them.

Step 2: As 3.3 < 3.3232 < 3.4, so again divide the gap between between 3.3 and 3.4 into 10 equal parts to locate the given number more accurately.

Step 3: As 3.32 < 3.3232 < 3.33 so, we continue the same procedure by dividing the gap between 3.32 and 3.33 into 10 equal parts.

Step 4: Also, 3.323 < 3.3232 < 3.324, so by dividing the gap between 3.323 and 3.324 into 10 equal parts, we can locate 3.3232.

We can represent irrational numbers of the form \sqrt{n} on the number line by first plotting $\sqrt{n-1}$, where *n* is any positive integer. **Example:** Locate $\sqrt{6}$ on the number line.

Solution: As $\sqrt{6} = \sqrt{\left(\sqrt{5}\right)^2 + 1^2}$

To locate $\sqrt{6}$ on the number line, we first need to construct a length of $\sqrt{5}$. $\sqrt{5} = \sqrt{2^2 + 1}$ $0 = \sqrt{2}$ A

By Pythagoras theorem, $OB^2 = OA^2 + AB^2 = 2^2 + 1^2 = 5$ $\Rightarrow OB = \sqrt{5}$

Steps:

Mark O at O and A at 2 on the number line, and then draw AB of unit length perpendicular to OA. Then, by Pythagoras Theorem, $OB = \sqrt{5}$.

Construct BD of unit length perpendicular to OB. Thus, by Pythagoras theorem,

$$OD = \sqrt{\left(\sqrt{5}\right)^2 + 1^2} = \sqrt{6}$$

Using a compass with centre O and radius OD, draw an arc intersecting the number line at point P.

Thus, P corresponds to the number $\sqrt{6}$.

• Representation of real numbers of the form \sqrt{n} on the number line, where *n* is any positive real number:

We cannot represent \sqrt{n} on number line directly, so we will use the geometrical method to represent \sqrt{n} on the number line.

Example:

Represent $\sqrt{8.3}$ on the number line.

Solution:

Step 1: Draw a line and mark a point A on it. Mark points B and C such that AB = 8.3 units and BC = 1 unit.

Step 2: Find the mid-point of AC and mark it as M. Taking M as the centre and MA as the radius, draw a semi-circle.

Step 3: From B, draw a perpendicular to AC. Let it meet the semi-circle at D. Taking B as the centre and BD as the radius, draw an arc that intersects the line at E.

Now, the distance BE on this line is $\sqrt{8.3}$ units.

- Operation on irrational numbers:
- **Like terms:** The terms or numbers whose irrational parts are the same are known as like terms. We can add or subtract like irrational numbers only.
- **Unlike terms:** The terms or numbers whose irrational parts are not the same are known as unlike terms.

We can perform addition, subtraction, multiplication and division involving irrational numbers.

Note:

(1) The sum or difference of a rational and an irrational number is always irrational.(2) The product or quotient of a non-zero rational number and an irrational number is always irrational.

Example:

$$(1) (2\sqrt{3} + \sqrt{2}) + (3\sqrt{3} - 5\sqrt{2})$$

= $(2\sqrt{3} + 3\sqrt{3}) + (\sqrt{2} - 5\sqrt{2})$ (Collecting like terms)
= $(2 + 3)\sqrt{3} + (1 - 5)\sqrt{2}$
= $5\sqrt{3} - 4\sqrt{2}$
(2) $(5\sqrt{7} - 3\sqrt{2}) - (7\sqrt{7} + 3\sqrt{2})$

$$= 5\sqrt{7} - 3\sqrt{2} - 7\sqrt{7} - 3\sqrt{2}$$

$$= 5\sqrt{7} - 7\sqrt{7} - 3\sqrt{2} - 3\sqrt{2}$$

$$= (5 - 7)\sqrt{7} - (3 + 3)\sqrt{2} \text{ (Collecting like term s)}$$

$$= -2\sqrt{7} - 6\sqrt{2}$$

(3) $(4\sqrt{5} + 3\sqrt{2}) \times \sqrt{2}$

$$= 4\sqrt{5} \times \sqrt{2} + 3\sqrt{2} \times \sqrt{2}$$

$$= 4\sqrt{10} + 3 \times 2 \qquad (\sqrt{2} \times \sqrt{2} = 2)$$

$$= 4\sqrt{10} + 6$$

(4) $5\sqrt{6} \div \sqrt{12}$

$$= 5\sqrt{6} \times \frac{1}{\sqrt{12}}$$

$$= \frac{5 \times \sqrt{2} \times \sqrt{3}}{2 \times \sqrt{3}}$$

$$= \frac{5}{2}\sqrt{2}$$

• Closure Property of irrational numbers:

Irrational numbers are not closed under addition, subtraction, multiplication and division.

Example: $-\sqrt{2} + \sqrt{2} = 0$, $\sqrt{2} - \sqrt{2} = 0$, $\sqrt{2} \times \sqrt{2} = 2$ and $\frac{\sqrt{2}}{\sqrt{2}} = 1$, which are not an irrational numbers.

• **Identities related to square root of positive real numbers:** If *a* and *b* are positive real numbers then

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$\left(\sqrt{a} + b\right)\left(\sqrt{a} - b\right) = a - b^{2}$$

$$\left(a + \sqrt{b}\right)\left(a - \sqrt{b}\right) = a^{2} - b$$

$$\left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} - \sqrt{b}\right) = a - b$$

$$\left(\sqrt{a} + \sqrt{b}\right)^{2} = a + 2\sqrt{ab} + b$$

$$\left(\sqrt{a} - \sqrt{b}\right)^{2} = a - 2\sqrt{ab} + b$$

$$\left(\sqrt{a} - \sqrt{b}\right)^{2} = a - 2\sqrt{ab} + b$$
We can use these identities to solve expression

We can use these identities to solve expressions involving irrational numbers.

Example:

$$\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)$$
$$=5-(3)^{2}$$
$$=5-9$$
$$=-4$$

- Rationalization of denominators:
- The denominator of $\sqrt[a]{x+\sqrt{y}}$ can be rationalized by multiplying both the numerator and the denominator by $\sqrt[a]{x} \sqrt[y]{y}$, where *a*, *b*, *x* and *y* are integers.
- The denominator of $\frac{\sqrt{a}+\sqrt{b}}{c+\sqrt{d}}$ can be rationalized by multiplying both the numerator and the denominator by $c \sqrt{d}$, where *a*, *b*, *c* and *d* are integers. Note: $\sqrt{x} - \sqrt{y}$ and $c - \sqrt{d}$ are the conjugates of $\sqrt{x} + \sqrt{y}$ and $c + \sqrt{d}$ respectively.

Example: Rationalize
$$\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}}$$

Solution:

$$\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}} = \frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}$$

$$= \frac{2\sqrt{2\times5}-2\sqrt{2\times3}}{\left(\sqrt{5}\right)^2 - \left(\sqrt{3}\right)^2} \qquad \left[(a+b)(a-b) = a^2 - b^2 \right]$$

$$= \frac{2\sqrt{10}-2\sqrt{6}}{5-3}$$

$$= \frac{2\left(\sqrt{10}-\sqrt{6}\right)}{2}$$

$$= \sqrt{10} - \sqrt{6}$$

• Laws of rational exponents of real numbers:

Let *a* and *b* be two real numbers and *m* and *n* be two rational numbers then

$$a^{p} \cdot a^{q} = a^{p+q}$$

$$(a^{p})^{q} = a^{pq}$$

$$\frac{a^{p}}{a^{q}} = a^{p-q}$$

$$a^{p}b^{p} = (ab)^{p}$$

$$\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n}$$

$$a^{-p} = \frac{1}{a^{p}}$$

Example:

$$\sqrt[3]{(512)^{-2}} = \left[(512)^{-2} \right]^{\frac{1}{3}} = (512)^{\frac{-2}{3}} [(a^m)^n = a^{mn}] = (8^3)^{\frac{-2}{3}} = (8)^{3 \times \frac{-2}{3}} [(a^m)^n = a^{mn}] = (8)^{-2} = \frac{1}{8^2} \left[a^{-m} = \frac{1}{a^m} \right] = \frac{1}{64}$$

